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ABSTRACT 

Performance assessments (PAs) include uncertain geochemical parameters that affect the fate and 
transport of contaminants in environmental media, such as partitioning coefficients for water/rock (Kd) 
and water/air (KH), diffusion coefficients, and aqueous solubilities. A statistical approach to realistic, as 
opposed to “conservative,” stochastic distribution development for geochemical parameters is presented 
here. For contaminants not identified as focus elements during screening, broad generic distributions are 
developed. If any parameter is flagged in the subsequent model sensitivity analysis (SA), it becomes a 
focus element for further research during the next round of distribution development. This iterative 
approach is efficient and technically defensible at each stage. 

Data are collected in databases and may be appropriately weighted or filtered. In the relatively few cases 
where data exist from local or analogous rocks, those data may be prioritized. Once established, the 
databases can be used for future PAs or other environmental models and can be expanded as needed 
based on model SA results, additional screening, and as additional relevant data become available. 

The iterative method is demonstrated for Kd and KH in a PA model for a radioactive waste disposal 
facility. An SA was performed based on preliminary geochemical parameter distributions that showed 
certain model endpoints are sensitive to Kd and KH values for some contaminants. This underscores the 
importance of including realistic uncertainty in these geochemical parameters. 

INTRODUCTION 

Modeling the long-term performance of radioactive waste disposal in geologic media has been an active 
area of research with continual improvement in methods and techniques. Typically, a site-specific 
performance assessment (PA) is a systems-level model composed of suitably coupled sub-models that 
simulate the processes leading to the transport and potential exposure of populations to hazardous 
constituents in waste. Geochemical parameters affect many of these processes, including contaminant 
transport in porous media, plant and animal uptake and redistribution of radionuclides, waste leaching, 
waste form degradation, and receptor exposure in scenarios such as gardening and gas inhalation. 

Development of a sound geochemical approach for site-specific PA models can be costly and time-
consuming. Locally sourced data from the same or analogous geologic material and aqueous environment 
are typically scarce, except for the largest-scale PA efforts in the country. When available, local data 
usually assess only a few elements and may not be truly representative of the full range of site conditions 
possible over the time evolution of the repository.  

In most PA model environments, contaminants may be transported as gases, as aqueous solutes or as 
colloids in water, or may be retained when bound to rock and cement. “Partitioning” refers to the 
calculation of the fractions of a constituent found in each of these media: air, water, and solid. Air/water 
partitioning is frequently modeled using Henry’s Law, and water/solid partitioning using a linear sorption 
approach. Both of these are simplified models that rely on assumptions of equilibrium and linear, 
reversible behavior. More complex models are available that could be employed if data are available to 
support and parameterize them. The benefit of these simplified models is they require few parameters and 
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are easy to implement, while generally describing appropriate behavior in the relevant and sensitive range 
of conditions (relatively dilute systems, weak sorption [1-3]).  

The parameter of interest for water/solid partitioning is Kd, which represents the ratio of contaminant 
sorbed on rock to the amount in aqueous solution. Kd values are different for each elemental, ionic, or 
molecular species present, as determined by the species’ relative affinity for the mineral phases as 
compared to water. Aqueous environmental factors that influence Kd values include redox potential, pH, 
pCO2, ionic strength, dissolved organic carbon, and the presence of other species; however, there may be 
great uncertainty in subsurface water chemistry, especially in proximity to waste forms. Aspects of the 
solid material that affect Kd values are mineralogical fraction, which may be heterogeneous within a 
material unit (i.e., percent and type of clays, sand, etc.); pore size and surface area (e.g., sand versus 
gravels, crushed or intact material); and the presence of organic matter. Finally, laboratory Kd 
experiments are notoriously complex to interpret in the context of heterogeneous field sites [3]. The type 
of experiment (e.g., batch versus column) and methods of sample preparation (e.g., crushing, sieving), 
solution treatment, and experiment run time are all important factors that affect the results and their 
applicability to a particular site-specific scenario. All of the factors listed above contribute to the great 
difficulty in determining and applying Kd distributions. 

Air/water partitioning following Henry’s Law has temperature-dependent coefficients, KH(T). As with 
Kds, the local aqueous geochemical environment influences KH values, including ionic strength and 
solution composition, and dissolved organic matter [1].  

Historically, many PAs used deterministic and so-called “conservative” values for parameters. However, 
it is now clear that when all of the processes in a PA model are considered, what is conservative for 
transport is not necessarily conservative for dose [4]. For example, the Kd of Tc-99 is frequently set to 0, 
with the justification that the value is conservative (i.e., the radionuclide is in a highly mobile form). 
While this may be realistic under some conditions, there are cases where the Tc Kd deviates from 0. 
Assuming a lower Kd will keep the radionuclide in solution and transport it throughout the model, instead 
of binding it to the solid material. This could result in a higher predicted groundwater concentration but 
lower predicted dose for the farmer or gardener who comes in contact with contaminated soil. A better 
approach is to use available information to develop realistic distributions that capture relevant sources of 
variability and uncertainty at a scale consistent with how the parameter is used within the PA model [5].  

Several classic references are often used to assign Kd values, particularly for radionuclides where few 
data exist in the literature. Sheppard and Thibault [2] performed a literature review for Kd values for 49 
elements in various media (sand, loam, clay, and organic-rich soil), with data from the U.S. and Canada 
providing lognormal Kd distributions for 48% of the results. For the remaining values, the tables are 
populated using soil/plant partitioning ratios, converted to Kds following an empirical relationship [6]. 
Despite the stated limitations of this survey, these values often form the basis for Kd values for PAs 
through a chain of commonly-cited references, e.g., [7]. A number of other literature reviews, 
compilations, and critical analyses have also been published that cover high-priority elements (e.g., [8-
12]) as well as environments of importance to waste disposal, such as cementitious materials (e.g., [13, 
14]). A free online Kd database that allows user submissions is also available [15]. For major PA efforts, 
Kd databases have been established with site-specific data (e.g., [16-19]). Thermodynamic sorption 
modeling can be used to inform site-specific Kds, with limitations [13, 20]. For KH, a thorough literature 
review by Sander [21] has been updated [1] with additional data.  

As PAs have been developed that are large in scope and have spurred the advancement of modeling 
techniques, probabilistic PAs have become more common, including for smaller-scale PA sites. Yet it is 
still common to see deterministic values for many contaminants that are assumed to not influence dose, 
and application of default distributions to key elements, such as uniform or triangular, often applied 
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without sound justification. A great improvement in technically defensible stochastic geochemical 
parameter development is possible, even in the absence of local data. While simple distributions may be 
adequate for assessing the parameters to which the model is sensitive and offer an improvement over 
deterministic values, more realistic distributions should be made for performance prediction purposes.  

The iterative approach presented here focuses effort where it will have the greatest benefit for reducing 
uncertainty in risk and dose. Preliminary results have identified KH and Kd for some elements as sensitive 
parameters, providing ample motivation for advancing our methods for their distribution development, as 
well as for other parameters. This geochemical parameter development approach uses appropriate 
statistical techniques, allows PA modelers to take advantage of the growing body of data available, 
including site-specific data, and the approach is easily extendable to other PA sites once the databases and 
framework are in place. An example of use in a PA model is provided in the Results section. 

METHODS 

After defining the target or goal for the distribution [5], the iterative approach has four main steps that 
result in model implementation (Fig. 1). In the first step, Screening, key questions include: which 
contaminants are present at the site? What quantities are present in the inventory, how mobile are they, 
and how much impact do they have on dose? Expert judgment or prior sensitivity analysis (SA) results 
[22] can also be used to screen focus elements. Unlike the common use of deterministic values for 
contaminants not thought to be important, “generic” distributions are generally broader for elements not 
identified as focus elements and apply to multiple elements. Any of these contaminants may be flagged 
during SA if sensitive and returned to the beginning as a new focus element. However, the modeler must 
be aware that wider distributions may not be an appropriate substitute for missing model structure or 
physical processes. The risk in that case is the SA could fail to catch sensitive parameters, and incorrect 
model results could show a diluted risk to certain populations. 

During Data Collection, the most relevant available sources are gathered. To determine relevance, some 
site assessment is performed first to identify the expected media types and aqueous environmental 
conditions at the site. In Filtering, data are culled based on the site assessment with consideration to the 
amount of data available, its quality and relevance to the site. Exploratory data analysis (EDA) is 
extremely useful for determining whether categorizations of the data have been appropriate, and new 
choices may be made if necessary. Finally, the data subsets are ready for Statistical Analysis, where 
distributions are developed for focus elements and other contaminants. The distributions are implemented 
in the model, and SA identifies new focus elements. These steps are discussed in more detail in the 
following sections for Kd and KH distribution development, but can also be applied to other parameter 
development, such as solubility, diffusivity, and material properties.  
 

 
Fig. 1. Overview of the iterative method for geochemical parameter distribution development.  
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Radionuclide Screening 

The process of reviewing and collecting sufficient data for geochemical parameter development may be 
time-consuming, especially with adequate quality assurance (QA) and deciphering the complicated 
dependence of geochemical data on the aqueous environment and the methods used to collect the data. At 
a typical waste site, after inventory analysis, a number of contaminants of potential concern are retained 
for the PA model and thus require geochemical parameter distributions. Not all of these will contribute 
strongly to dose, which is revealed in subsequent SA. However, a preliminary screening may be 
performed at the outset to reduce the list of contaminants that require increased attention.  

The preliminary screening process involves sorting the list of all contaminants retained for the model into 
high, medium, and low bins for the three categories of amount (activity or mass of contaminant present), 
mobility (based on Kd), and dose (based on dose conversion factors [DCFs]). The bin endpoints are 
subjective and may be changed between models based on expert judgement, particularly for inventory. 
The high and medium bins are compared and contaminants that appear in all three lists are compiled. For 
example, I-129 falls into the “high” bin for Kd (i.e., highly mobile) and for dose, and is in the “medium” 
bin for inventory at one site. Progeny of screened radioelements and of high-mobility radiological parents 
are added (if they are not already included). Screening can also include consideration of other criteria, 
site-specific knowledge, prior sensitivity results, and expert judgment to add or remove focus elements.  

For radiological contaminants, an important distinction must be made between radionuclides, elements, 
and species. While radiological PA models simulate transport of each radionuclide identified as a 
contaminant of potential concern, geochemical properties do not depend on isotope (except where 
molecular mass becomes important, as for tritiated versus untritiated water vapor) and so distributions are 
developed by element. For example, U-233, U-234, U-235, U-236, and U-238 are grouped into the 
element or radioelement uranium for geochemical parameter assignment. Each element may be found in 
multiple molecular or ionic species. For example, U in oxidizing environments is most commonly found 
as UO2

2+, which hydrolyzes to form predominantly UO2(OH)2 from pH 5–9; depending on species 
present, complexes with carbonates, chloride, sulfate, and phosphate are also possible [10]. Each of these 
species will have different geochemical parameters due to size, charge, and affinity for other molecules. 
The problem of speciation is especially complex for carbon/C-14. Carbon migrates in the environment in 
many forms: as CO2 and CH4 gases, as part of organic compounds (both aqueous and gaseous), and in 
solution as carbonate, bicarbonate, and carbonic acid, and bound with other species such as U.  

Data Collection 

To produce the database for Kd distribution development, an extensive review of both peer-reviewed and 
white paper literature was performed, incorporating Kd data from over 60 sources. The intention was to 
include a wide range of available data for each key element, so distributions could be built that reflect the 
uncertainty in the subsurface environment at the site and to allow flexibility in including or excluding 
data, based on expert judgement of the applicability of those data to the site. The database sources 
included the following types of documents, in generally decreasing order of completeness of information: 

1) Papers containing original data, typically found in peer-reviewed journals and including extensive 
information about experimental conditions, methodology, and uncertainty.  

2) Literature reviews, which provide references to the original data. This category includes 
commonly cited sources, e.g., [2, 9, 12-14]. 

3) Model description white papers, reports, or data packages, which give Kd values determined for a 
particular modeling application. These reports sometimes provide an explanation of the methods 
used to determine these values, often based on a combination of literature review, such as the 
papers in category 2 above, site-specific data if available, and expert judgement.  
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All data that could be obtained from these sources are entered into the database, including (when 
available) the information listed in Table I. Care is taken to avoid entering different experimental 
references that are actually repeats of the same data, but data duplication will occur when literature 
reviews are entered. The database identifies whether each source is primary experimental data, literature 
review, mechanistic sorption model results, expert judgement, or values used in another model. Having 
this information helps avoid repeated measurements and bias, while still allowing the user to easily 
compare resulting distributions with previously used values for PAs or with commonly accepted 
distributions. The type of source can also be used as a user-defined proxy for the quality of the data. 

Geochemical speciation modeling is sometimes used to determine the breakdown of species for each 
element of interest under the aqueous environmental conditions at a site. In the iterative approach 
presented here, data for multiple species may be entered, as well as data from natural geochemical 
environments, which can produce broader distributions than those focused on an individual species. As 
contaminants are identified as sensitive in the SA, further study or geochemical speciation modeling can 
be performed to determine which species are likely to be present in what percentages. This can then be 
used to weight or filter the data in the database. 

Despite the importance of experimental conditions in interpreting Kd values, many literature sources do 
not include complete information about experimental factors such as pH and Eh, particularly in large 
literature reviews. Some sources give only a coarsely defined differentiation of the relevant porous media, 
such as “sand,” “clay,” “basalt,” while others provide more detailed mineralogical and/or textural 
conditions. How incomplete data were dealt with depended on how many data were available, and the 
extent of impact of the particular condition on the partitioning behavior of that element, as described in 
the discussion of filtering below. 
 

TABLE I. Kd database components and description 
Item Description 

Date added Used for QA purposes. After initial QA, QA is performed on new entries only. 
Element Element symbol/name.  
Kd value Reported Kd values, converted to units of mL/g if necessary.  
Value type Values reported in the literature may be means across a wide range of studies (as in 

a literature review), means of replicates of samples in the same study, single 
measurement values, or values proposed based on expert judgement.  

Data type Type of study: literature review, experiment, geochemical model, or values used in 
other models (e.g., in a previous PA). 

Min/max Where ranges are given, the min and max columns are populated. 
Spread If spread information is given (e.g., standard deviation), it is listed here. 
Spread type Identifies the type of spread or distribution, if any. Common examples include one 

or more standard deviations, standard deviation of logarithms, and variance.  
N samples The number of samples represented by the value given on a line in the database. 
Soil type The soil, rock, or engineered material type exactly as given in the source. 
Location If the geographic location of the sample is provided, it is recorded. 
pH pH or pH range.  
Eh Numerical (in mV) or descriptive redox information, e.g., “oxic” or “anoxic.”  
Species If known, the species is given exactly as in the source, e.g., TcO4

-, Np(V). 
Source An ID code linking the value to a particular reference. 
Additional 
information 

Used for pointing where in the reference the values or information may be found 
(e.g., “Table 3,” “text p.33”). Also used for any other information that may affect 
Kd values, such as “high ionic strength solution.” 
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To construct the KH database, Henry’s Law coefficients are gathered from the literature, primarily [1], but 
also other primary sources not found in the former. Values for partitioning of tritiated water vapor from 
the liquid at various temperatures are also collected [23-25]; these data are analyzed separately. 

Literature values for KH spanned a range of temperature T (0 to 30°C) based on the experimental 
conditions. The values were adjusted to KH,0 at a reference temperature of T0 = 25°C using [21]: 

𝐾𝐾𝐻𝐻,0 = 𝐾𝐾𝐻𝐻(𝑇𝑇)exp �− �−𝑑𝑑(ln𝐾𝐾𝐻𝐻)
𝑑𝑑(1/𝑇𝑇)

� � 1
𝑇𝑇0+273.15

− 1
𝑇𝑇+273.15

��  (Eq. 1) 

The temperature dependence parameter -d(ln KH)/d(1/T) is also found in the literature, and is entered in 
the database when available.  

Henry’s Law applies for dilute solutions [1]. However, groundwater, pore waters, and waste-altered 
waters at disposal sites may have high dissolved solids content due to interactions with waste forms and 
geologic media. These effects on KHs were not considered in the first round of distribution development, 
but may be an area for future research for sensitive elements. 

Kd Approach – Filtering and Statistical Analysis 

The following methods are used to prepare Kd distributions (Filtering and Statistical Analysis steps in Fig. 
1). First, site-specific environmental conditions are assessed and the types of materials and water present 
are identified. Typical solids include cover layers composed of different rocks and soils, the waste, 
disturbed native material (e.g., crushed rock), intact geologic media, cement, and bentonite/clay systems. 
In some cases, materials may be utilized specifically for their effect on geochemical behavior, e.g., 
reducing agents to diminish mobility.  

Water “types” at a site may include pore water, near-surface meteoric water, groundwater, and waters 
altered by leaching from the wastes or waste forms (e.g., cementitious water). The aqueous environmental 
conditions of these water types are assessed: what is the expected pH of pore water in the native soil? In 
intact rock? Around the waste and waste forms? What are the redox conditions and ionic strength? What 
ions are likely to be present in solution (e.g., carbonates)? Some of these answers will be used to filter the 
data, if enough information is available in the database to do so.   

A list is constructed during this assessment that includes each combination of soil/rock type and 
associated water chemistry that will be considered in the model. Due to data limitations, it is usually 
necessary to make the groupings broad and have as few combinations as is practical. In the example PA 
model below, the solid material groupings are Sand, Clay, and Cement; the water types are pore water 
(used for Sand and Clay) and oxidizing or reducing cementitious water.  

For each solid material, determinations must be made about which rock types in the database are 
applicable. For example, the category “Sand” may be applied in the model to sandstone, gravel cover 
layers, and topsoil (i.e., the category is much more broad than the name implies). Therefore, to ensure the 
distribution is appropriately broad, a range of rock types in the database may be selected for inclusion in 
this category: e.g., sand, loam, soil, sediment, while for Clay, rock type descriptors in the database such as 
clay, silty clay, clay/sand, and silty clay loam are selected. If a Kd in Sand or Clay is flagged as sensitive 
when used with a broad distribution, additional research can refine the category or characterize different 
layers separately. Later in the iterative process, for elements that are sensitive, mineralogical 
considerations can also be included in filtering. For example, high Tc Kd values can be due to iron oxide 
surface coatings, which might suggest excluding data by the Location field for sites known to have such 
conditions in some sediments, e.g., Savannah River Site [26], if they are not present at the study site.  



WM2017 Conference, March 5-9, 2017, Phoenix, Arizona, USA 

7 

 

Similarly, for each water type, determinations are made about which data are applicable. If water 
conditions in a layer are expected to be oxidizing with pH > 7, only data with known oxic conditions and 
neutral or greater pH could be selected. In practice, because many data lack specific information about 
redox conditions and pH, if there are very few data for an important element, the database user may wish 
to make assumptions (e.g., data without pH information may be used). This is especially reasonable for 
elements for which these conditions are not thought to significantly impact Kds. For example, for 
elements with Kds sensitive to redox conditions (e.g., Am, Cr, Np, Pu, Tc, U [9]), the user may choose to 
exclude data where redox conditions in the dataset are unknown, while for other elements, those data 
could still be used in the first round of distribution development. 

Some elements demonstrate particular Kd characteristics. Negative Kd values are found in the literature 
for some species (such as TcO4

– and Cl-) in some materials [9]. The explanation given for this seemingly 
non-physical result is anion exclusion [27], caused by repulsion between charges in the material surface 
and the contaminant. This causes higher sampled concentrations than expected from initial solution 
concentrations. Noble gases dissolved in aqueous solution, such as Ar, Kr, and Rn, have Kd = 0 based on 
their inert geochemical behavior. Hydrogen (tritium) is generally thought to be non-partitioning, but as 
HTO it may replace bound H2O and show a small apparent partitioning effect. Therefore, some nonzero 
hydrogen values are found in the data [10]. 

Some elements, such as Ra, undergo coprecipitation, e.g., to (Ba,Ra)SO4 in sulfate-bearing waters. This 
shows up as very high Kd values despite actual Kds based on sorption being rather low. This affects the 
database values as some experiments control for the effect while others do not [11]. Because this process 
is expected to take place in natural environments, these unrealistically high apparent Kd values may be 
retained for distribution development. 

Carbon is another element affected by precipitation, which makes describing the complex partitioning and 
transport of C-14 in a simple Kd model problematic. At some sites, a significant fraction of mobile C-14 
in the vicinity of buried waste is inorganic carbon (e.g., HCO3

– and CO3
2–) [28, 29]. While precipitation 

is a different physical process from sorption, it may affect experimental results, giving very high apparent 
inorganic carbon Kd values in cement [28, 30]. For some elements, e.g., U, soluble carbonate complexes 
are less sorbing than other U species, so the presence of carbonate generally decreases U Kd values and 
thereby increases mobility. 

After relevant environmental conditions and rock types are selected, EDA can help review and assess the 
quantity and quality of data for each element and rock type (Fig. 1). Outlying data points can be easily 
identified and researched further. For example, in one case several unusual data points were identified 
during EDA and a quick review of the original source revealed high ionic strength conditions in the water 
used in the experiment. The database was then filtered to exclude high ionic strength solutions beyond the 
expected site values. 

Once several rounds of EDA are completed and the data filtering selections finalized, Kd value datasets 
are prepared for distribution development. The filtering, EDA, and distribution calculations are performed 
using the R statistical computing software [31]. Two categories of distributions are developed: those for 
the focus elements identified in the screening, each of which receive a distribution for each rock and 
water type; and “generic” distributions for all other elements (described below).  

Most records report a mean Kd or a single value for Kd, though the data also include geometric means, 
medians, and most likely values. In some cases, only a range of values is given. When only a range is 
given, the midpoint of the range is used. If distributional information is also provided, a mean or 
geometric mean is computed. Eventually, the distribution development process will be updated to better 
account for distributional and spread information in the sources. For now, modeling is based on the 
provided individual Kd values, except in a few cases where data are scarce and a distribution is provided.   
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There is often considerable variation in reported values between sources, compared to relatively small 
variation in reported values within a source. To accommodate the differences while not allowing sources 
with the largest numbers of recorded Kd values to dominate the distributions, a double bootstrapping 
approach is taken for estimating distribution parameters.  

Distributions of Kd values for individual element/rock type/water type combinations developed for the 
focus elements are often approximately lognormal. Ideally, all distributions used in the PA model would 
represent average Kd values, where the average is appropriate over the duration of the model and over the 
spatial cells used in the model [5]. If the data are assumed to represent Kd values at points in time and 
space that are applicable to the site, and there are sufficient data, a normal distribution may be appropriate 
for average Kd values for each element, using information from the data and decisions about the scale of 
the average. When data are sparse, distributions of average Kd values are right-skewed and might be more 
reasonably modeled by lognormal distributions. For each distribution associated with a focus element, 
when sufficient data are available, both a normal and lognormal distribution are considered. Typically, the 
distribution that allows greater variability on the low end of the distribution is chosen.  

The following basic approach is used in this example for specifying the normal and lognormal 
distributions of focus elements based on bootstrapped data: 

• If the data include non-positive values, a normal distribution is used, and the distribution is 
truncated at the minimum data value. Negative random draws from such distributions are 
replaced by 0 in the PA model, resulting in a point mass at 0. 

• When the data include only positive values, both a normal and lognormal distribution are initially 
considered. The one deemed more appropriate by professional judgement is chosen, where the 
goal was typically to retain variability on the low end of the distribution. 

• In cases where data include only positive values and a normal distribution is chosen, the 
distribution is truncated at one tenth the minimum Kd value in the dataset that informs the 
distribution development. The truncations were adopted because element/soil combinations with 
high Kd values also typically have considerable variation in Kd values, so normal distributions 
based on the parameter values obtained from the bootstrap distribution would sometimes allow 
negative values to be randomly drawn. Truncating in these cases disallows very small Kd values 
when larger ones are expected, and yet the chosen truncation allows for a reasonably wide 
distribution. 

Generic Kd distributions are developed to represent the non-focus elements, and are intended to 
encompass the variability in the data for the different elements. The generic distributions do not describe 
distributions of averages, but rather distributions of Kd values, since the variability between different 
elements should not be averaged away. They are informed by all data for all elements, including the focus 
elements. The same criteria for pH and redox conditions are applied for filtering data for the generic 
distributions as the focus elements.  

The generic distributions include a low, medium, and high distribution for each of the rock and water type 
combinations. Low Kd elements have arithmetic average of available Kd values less than 5 mL/g; medium 
Kd elements between 5 mL/g and 50 mL/g, inclusive; and high Kd elements, greater than 50 mL/g. 

The generic Kd distributions are assumed to be lognormal. The lognormal parameters μ and σ are 
estimated as the mean and standard deviation, respectively, of the natural logarithm of the available Kd 
values, when those values are entirely or predominantly nonnegative. Exponentiating μ and σ gives the 
geometric mean and geometric standard deviation required for the model. For the low Kd distributions, 
due to nonpositive values, the arithmetic mean and standard deviation are found using all the data, and the 
lognormal distribution with the corresponding mean and standard deviation are used. (This allowed all of 
the data to inform the distribution, without having to make a substitution choice for nonpositive values.) 
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KH Approach – Filtering and Statistical Analysis 

All of the data in the KH database that apply to dilute solution concentrations are typically used. If high 
ionic strength solutions are to be considered in a PA model, data can be collected for those conditions as 
well and filtered appropriately. Because Henry’s coefficients are strongly temperature-dependent, the 
approach taken to sample them involves uncertainty in subsurface temperature. The soil temperature 
distribution developed for the site and the reference temperature KH,0 distributions for each element, 
except H, are used to produce appropriate KH(T) values for each realization using the following steps: 

1. Sample for KH,0 from the given distributions for each element other than H. 
2. Sample for soil temperature from the site-specific distribution. 
3. Apply Eq. (1), but with roles of KH and KH,0 reversed, to determine KH(T) at soil temperature 

T. 

The statistical approach for KH,0 distributions for all elements except tritium is to develop a distribution 
for the individual data values, rather than the average; either normal or gamma distributions were 
selected. Values for the constant -d ln KH/d(1/T) presented in the literature show variability, but a 
deterministic value is used in step 3 above because holding -d ln KH/d(1/T) fixed has minimal effect on 
uncertainty in KH(T) compared to T and KH,0.   

For tritium, there are no temperature dependence parameters available. A plot of KH versus T from the 
available data suggests the relationship is approximately linear over a temperature range overlapping the 
range of expected subsurface soil temperatures. Thus a regression is fit, and the predictive distribution for 
an individual value of KH for tritium, given a specific soil temperature, is used as the distribution for KH. 
The approach is the following: 

1. Fit a regression for predicting KH for tritium as a function of soil temperature T. This results in 
a regression equation ŷ(T) = a + bT, and an estimate s of the standard deviation of the 
regression residuals. 

2. Sample for soil temperature from the site distribution (same value as step 2 above). 
3. Use the predictive distribution for an individual value of KH, conditional on the sampled soil 

temperature T = Tp, as the distribution describing KH(Tp).  

The mean of the predictive distribution is given by the regression estimate ŷ(Tp), and a random sample for 
KH(Tp) can be drawn by first obtaining a random draw 𝑡𝑡𝑛𝑛−2∗  from a t-distribution with n – 2 degrees of 
freedom, and then transforming that draw to get a predicted value of KH(Tp) by computing 

𝑦𝑦��𝑇𝑇𝑝𝑝� +  𝑡𝑡𝑛𝑛−2∗ 𝑠𝑠�1 + 1
𝑛𝑛

+ �𝑇𝑇𝑝𝑝−𝑇𝑇��
2

∑ (𝑇𝑇𝑖𝑖−𝑇𝑇�)2𝑛𝑛
𝑖𝑖=1

    (Eq. 2), 

where the data used to fit the regression line are the pairs (Ti, KHi), i = 1, …, n. 

RESULTS 

The process outlined above is illustrated with an example from a PA model that simulates long-term dose 
and exposure to receptors using the GoldSim contaminant transport platform [32]. The disposal facilities 
are excavated in a dense clay. Waste is disposed within layers of steel-reinforced concrete. Above the 
waste is a cover constructed of concrete, native clays, sands and soils. The mineralogy of the site is 
dominated by three distinct porous material types, grouped into three modeled materials: sands, clays, and 
cementitious materials. The materials in the model were grouped based on mineralogical and textural 



WM2017 Conference, March 5-9, 2017, Phoenix, Arizona, USA 

10 

 

similarity to the actual engineered or environmental media being modeled. For example, the Sand 
grouping is used for topsoil, all non-clay cover layers, and sandstone strata. The Cement grouping is used 
for actual cement layers as well as the waste materials in the model. 

In some of the cover layers, pore waters are expected to have the native pore water chemistry, as 
influenced by the water source, residence time, rock mineralogy, pCO2, Eh, pH, and temperature. Very 
near the surface, pore water in the cover layers (such as topsoil) may be more strongly influenced by low-
pH meteoric water. In the waste disposal zone, pore waters are expected to be in equilibrium with the 
cementitious materials. Below the waste and concrete layers, pore water is again assumed to have a 
“native” composition unaffected by cement and waste materials. The selected water types for distribution 
development were simply pore water, assumed to be the same in Sand and Clay for lack of finer 
distinctions in the data; and cementitious water, applied only to the Cement material, which could be 
oxidizing or reducing (for future consideration of adding reductants to the waste form materials). 

Screening Results 

Following inventory analysis, a total of 244 radionuclides were retained for inclusion in the PA model; 
these represent 62 unique elements, of which 6 are volatile. To develop Kd distributions for 62 elements 
in the four selected combinations of rock and water type would be extremely time-consuming; therefore, 
the screening process was initiated as described in the Methods section.  

Elements were considered for inclusion in the focus group when they appeared in two or three of the 
medium or high bin screened lists (quantity, mobility, and dose). Expert judgement was supplied based on 
prior modeling results to identify additional elements. The focus elements for Kd development selected 
during the first screening were Am, C, I, Np, Pu, Ra, Tc, and U. All volatile elements (Ar, C, H, I, Kr, and 
Rn) were considered focus elements for KH distribution development. 

Kd Distributions 

Once the solid material categories were determined, collection of Kds for these rock types was 
emphasized, but the database includes many other related rock/soil types as well and is continually 
expanding. Site conditions and availability of data dictated the filtering rules used to prepare the datasets 
for each media type. For elements with redox-sensitive Kds, when information about these conditions was 
unavailable, those data were excluded. Otherwise, the data were retained for oxidizing distributions. 
Focus elements assumed sensitive to redox conditions for Kd were Am, Np, Pu, Tc, and U [9].  

Soil materials at the site provide a generally neutral to alkaline aqueous environment. When pH was not 
specified in the original source, the data were assumed to fall under the neutral to alkaline category (pH 7 
to 9) for all materials except cement, in which case the pH was assumed >9. 

Although many of the soil type descriptors in the database are imprecise and are not expected to 
accurately represent the site-specific conditions, they are expected to cover a wide range of mineralogical 
examples and support broad distributions when filtered appropriately for the given categories in the model 
(note that each category in the model itself covers a range of modeled real materials). When elements are 
flagged as sensitive, additional research can be performed to selectively narrow the filtering rules to more 
media-specific values.  

Fig. 2 shows an example of the filtered data and corresponding distributions developed for Tc in Sand and 
U in Clay. Data values are shown as points below the distribution, with values/spreads colored by source 
name in the database. Ranges are shown when such information was provided. When mean/geometric 
mean and standard deviation/geometric standard deviation (or equivalents) are provided, the 5th and 95th 
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percentiles of the corresponding normal/lognormal distributions are used to represent range.  

Negative Kd values for Tc seen in Fig. 2(a) are common in the filtered data for sand and sand-like 
materials. If a negative value is sampled for a probabilistic realization in the site model, the value is 
changed to 0 mL/g. The GoldSim contaminant transport module does not allow for Kd values to be 
negative, though anion exclusion could be modeled as a separate process. Replacing negative draws in 
GoldSim by 0s is not represented in Fig. 2(a) (the scale for a point mass at 0 and a scale for the 
continuous density functions are different, and not accurately representable simultaneously). 

Typically, there were significantly fewer data available for clay-like materials than for Sand. Fig. 2(b) 
illustrates some of the issues associated with distribution development for Kds, with much of the data 
scattered on the low end of the range and one value at 1600 mL/g. While there are a number of sources 
for U in clay-like materials in the pH range 7 to 9, only two of those references provide information about 
the redox conditions. Because U Kds are redox-sensitive, the only data retained are from [2] and [10]. 
While the point at 1600 mL/g appears to be an outlier in the selected data set, the full data (not controlling 
for unknown redox conditions) shows additional data in the high Kd range. Furthermore, 1600 mL/g is a 
value used in previous modeling for this type of clay, e.g., [33].   
 

 
Fig. 2. (a) Kd distribution for Tc in sand-like materials. (b) Kd distribution for U in clay. Raw data that 
meet the screening criteria are shown on the lower portion of the plot, along with associated spread or 
ranges. Limited horizontal scale (not all data/spreads are shown). Dashed lines show previously-used 

deterministic values in prior modeling for the site. 

Since an untruncated normal distribution would allow inappropriately low random draws (including 
negative values), and the lowest value in the filtered data set was 12 mL/g, the U distribution was 
truncated at 10% of the minimum value, or 1.2 mL/g. Both a normal and lognormal distribution were 
considered.  A normal distribution was chosen because draws less than the data minimum would be rare 
in a lognormal distribution, and the decision was made to allow smaller average Kd values to be drawn 
than the individual data values. This allows a more robust sensitivity analysis. If the model is sensitive to 
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this parameter, more information will be sought to refine the distribution. 

The non-focus elements were sorted into ranges as described in the Methods section (Low, Medium, and 
High) and generic distributions were developed for each media type in each range (Fig. 3). A lognormal 
distribution was fit to each of the groups. The distributions are shown with the horizontal axis on a 
logarithmic scale (so the distributions themselves look normal). On a standard scale, the High distribution 
spans so many orders of magnitude that a visual comparison is difficult. 
 

 
Fig. 3. Generic lognormal Kd distributions for Sand, Clay, and Cement, shown on a logarithmic horizontal 

axis scale.  
 
All final distributions are given in Table II. The Kd distributions chosen for the 8 focus elements 
considered individually in Sand, Clay, and Cement (oxidizing and reducing conditions) are all either 
truncated normal or lognormal distributions. In the PA model, truncated distributions must have specified 
values for both minimum and maximum; an arbitrarily large value (denoted “Large”) is used as the upper 
bound and the lower bound is either 10% of the minimum value in the dataset (if positive) or the 
minimum value in the dataset (if negative). The values used for the distributions are derived from the 
double bootstrap approach described in the Methods section. For Np and Pu in clay soils and oxidizing 
conditions, lognormal distributions based on [2] are used instead, and for C in cement and reducing 
conditions, the generic distribution for high Kd elements in cement was used. These encompass a wide 
range of potential values, and do not describe a distribution of averages. The wide distributions are used 
in these cases because of the scarcity of information and the corresponding uncertainty in Kd values. 
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Table II. Kd distributions for media represented in the PA model 

Element Soil/water partition coefficients (Kd) (mL/g)a 

 Sand Clay Cement 
(oxidizing) 

Cement  
(reducing) 

Ar, Kr, Rn 0 0 0 0 

Am N(2.1E3, 8.7E2, 
[1.2E1, Large]) LN(4.8E3, 1.4E0) LN(7.3E3, 1.4E0) LN(1.0E4, 1.7E0) 

C N(2.4E0, 9.9E-1,  
[-3.9E-1, Large]) 

N(1.1E0, 9.8E-1,  
[-6.0E-1, Large]) 

N(1.3E4, 8.9E3, 
[2.0E0, Large]) LN(5.4E3, 2.2E1) 

I N(3.3E0, 1.1E0,  
[-3.0E-2, Large]) 

N(2.9E0, 2.3E0,  
[-1.3E-1, Large]) 

N(1.8E1, 6.8E0, 
[0.0E0, Large]) LN(1.2E1, 3.1E0) 

Np N(8.1E1, 6.3E1, 
[6.3E-2, Large]) LN(5.5E1, 3.8E0) LN(7.4E4, 7.7E0) LN(3.3E5, 6.6E0) 

Pu N(6.4E2, 1.7E2, 
[1.0E1, Large]) LN(5.1E3, 2.1E0) LN(7.1E4, 3.7E0) LN(7.5E4, 3.8E0) 

Ra N(6.5E3, 6.6E3, 
[1.3E0, Large]) 

N(6.1E4, 5.6E4, 
[1.2E1, Large]) 

N(7.5E1, 1.0E1, 
[5.0E0, Large]) LN(2.2E2, 2.3E0) 

Tc N(9.8E-2, 8.3E-2, 
[-2.8E0, Large]) 

N(2.5E-1, 3.4E-1,  
[-1.5E-1, Large]) 

N(4.7E-1, 2.1E-1, 
[-4.6E-1, Large]) 

N(1.5E3, 5.6E2, 
[8.1E-1, Large]) 

U N(9.2E0, 4.2E0, 
[1.4E-2, Large]) 

N(4.3E2, 3.9E2, 
[1.2E0, Large]) LN(2.7E4, 2.6E0) N(1.1E4, 7.8E3, 

[1.0E1, Large]) 

Low Generic LN(7.2E-1, 4.2E0) LN(3.0E-1, 5.4E0) LN(1.4E-1, 3.3E0) LN(5.2E-1, 2.7E0) 

Med. Generic LN(6.9E0, 4.0E0) LN(1.4E1, 2.5E0) LN(1.3E1, 4.6E0) LN(7.4E0, 5.0E0) 

High Generic LN(2.5E2, 1.2E1) LN(7.1E2, 7.9E0) LN(9.1E3, 2.2E1) LN(5.4E3, 2.2E1) 
a N = Truncated Normal(Mean, Standard Deviation, [Min, Max]);  LN = Lognormal(Geometric Mean, 
Geometric Standard Deviation);  “Large” = 1e30 mL/g 

 
KH Distributions 

The Henry’s coefficient distributions were developed as discussed in the Methods section. Carbon is 
currently only considered as CO2 in vapor at the site, but in places where site-specific knowledge 
suggests methane and other volatile organic compounds are also important, these species may be included 
in the KH database and weighted according to their expected percentages. H2 is the primary species in 
which tritium is expected to be released from the waste, but it partitions into water. For the site model, 
tritium is simulated as tritiated H2O vapor. Limited knowledge of I suggests developing a wide 
distribution that captures the literature values for I as both I2 and CH3I. 

The data and fitted distributions for KH,0 for all elements except tritium are shown in Fig. 4(a–e). Because 
the values for I are right-skewed, a gamma distribution is used. For the remaining elements, normal 
distributions are used. Means and standard deviations are calculated from the literature data. The 
calculated standard deviations are doubled to produce sufficiently wide distributions to capture the more 
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extreme values. All of the normal distributions are truncated because KH,0 cannot be negative. To avoid 
divide by zero errors, the minimum is set to a very small value instead of zero. The maximum is set to a 
very large value, as in Table II above.  

The procedure for determining the tritium KH distribution is different than the other radioelements. Data 
collected for KH versus temperature are shown in Fig. 4(f). The fitted regression line is given by  

𝑦𝑦� = −2.04 ∗ 10−4 + 7.53 ∗ 10−7[1/𝐾𝐾] ∗ 𝑇𝑇𝑝𝑝   (Eq. 3), 

which is used to calculate the mean of the distribution of KH at sampled temperature Tp. Using the 
development described in the Methods section (Eq. 2), and simplifying to avoid an additional model 
parameter, the distribution for KH(Tp) is approximated by a normal distribution with mean ŷ(Tp) and 
standard deviation 2.6 × 10-6. These are shown in Figure 4(f) with two examples of the computed normal 
distribution centered on the regression line. As before, distributions are truncated at 0 to avoid negatives, 
though such draws are very rare. 

 

 
Fig. 4. (a–e) Fitted distributions for Henry’s Law coefficients at reference temperature, KH,0. (f) Tritium 

data as a function of temperature, with distributions shown for Tp = 7°C and 27°C.  

Discussion 

The distributions developed above were implemented in a GoldSim site model, and an SA was performed 
to demonstrate which parameters were responsible for most of the uncertainty for dose endpoints [22]. 
Frequently-observed sensitive parameters included inventory amounts, biotic model parameters (e.g., root 
depth), site geometry uncertainties, receptor behaviors and layout of their facilities, and geochemical 
parameters, including KH, Kd, and solubility for particular element/media combinations. Some receptor 
doses were sensitive to Kds for I and Th in Cement, Tc in Clay, and KH for I and Rn. 

These results will inform the next iteration of geochemical parameter development for the site, including 
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additional work on Kd and KH for sensitive elements. The results also provide an indication of potential 
areas of focus for parameter distributions for PAs at other sites, i.e., the relative importance of uncertainty 
in geochemical parameters compared to other uncertain receptor, site, and inventory parameters.  

CONCLUSIONS 

The geochemical parameter development approach presented here is a rigorous and technically defensible 
framework that may be followed for many modeled values, including partitioning coefficients, other 
transport variables, material properties, and biotic parameters. The steps of the method are screening, data 
collection informed by site assessment, filtering of data (also informed by the site assessment, as well as 
EDA to evaluate data quantity and quality), statistical analysis, and model implementation/SA. Sensitivity 
results are used to refine the model as needed by returning to the screening or filtering steps. This iterative 
approach is taken so efficient use of time and budget is focused on parameters likely to have the greatest 
impact on risk calculations and, thereby, on decisions regarding waste disposal.  

The Kd database currently includes over 2,400 entries from 69 references and is continually growing as it 
is used for PA projects in disparate rock types. The KH database covers several volatile radioelements 
expected at disposal facilities, and can be expanded to include other gaseous species. Distributions 
developed from these databases were implemented in a site PA model, and certain elements were flagged 
as sensitive during SA, indicating new focus elements for the next round of distribution development.  

The geochemistry approach presented here, once established for a site, may be used with minor 
modifications elsewhere (new rock type groupings, additional data collection for local or site-specific 
values, aqueous condition filtering, and review of final distributions). Each new site leverages data 
collection and statistical analysis performed for all of the prior sites. In theory, without considering 
aqueous conditions or speciation, KH,0 distributions are not site-specific, and only a new temperature 
distribution is required for the next site (usually developed during the site assessment phase).  

While the development of geochemical parameter distributions by collecting data and producing 
appropriate statistical representations is not new, the benefit to this updated approach is that it considers 
all available knowledge (site-specific and generic), statistical best practices, and has great flexibility for 
the user in culling data based on the amount available and quality of the literature source.  
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